Blood-oxygen-level Dependent
   HOME

TheInfoList



OR:

Blood-oxygen-level-dependent imaging, or BOLD-contrast imaging, is a method used in functional magnetic resonance imaging (fMRI) to observe different areas of the
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a ve ...
or other organs, which are found to be active at any given time.


Theory

Neurons do not have internal reserves of energy in the form of sugar and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
, so their firing causes a need for more energy to be brought in quickly. Through a process called the
haemodynamic response In haemodynamics, the body must respond to physical activities, external temperature, and other factors by homeostatically adjusting its blood flow to deliver nutrients such as oxygen and glucose to stressed tissues and allow them to function. ...
, blood releases oxygen to active neurons at a greater rate than to inactive neurons. This causes a change of the relative levels of
oxyhemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocyte ...
and deoxyhemoglobin (oxygenated or deoxygenated
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the cir ...
) that can be detected on the basis of their differential magnetic susceptibility. In 1990, three papers published by
Seiji Ogawa Seiji Ogawa (小川 誠二 ''Ogawa Seiji'', born January 19, 1934) is a Japanese biophysicist and neuroscientist known for discovering the technique that underlies Functional Magnetic Resonance Imaging (fMRI). He is regarded as the father of moder ...
and colleagues showed that hemoglobin has different magnetic properties in its oxygenated and deoxygenated forms (deoxygenated hemoglobin is
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
and oxygenated hemoglobin is
diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted ...
), both of which could be detected using
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
. This leads to magnetic signal variation which can be detected using an MRI scanner. Given many repetitions of a thought, action or experience, statistical methods can be used to determine the areas of the brain which reliably have more of this difference as a result, and therefore which areas of the brain are most active during that thought, action or experience.


Criticism and limitations

Although most fMRI research uses BOLD contrast imaging as a method to determine which parts of the brain are most active, because the signals are relative, and not individually quantitative, some question its rigor. Other methods which propose to measure neural activity directly have been attempted (for example, measurement of the Oxygen Extraction Fraction, or OEF, in regions of the brain, which measures how much of the oxyhemoglobin in the blood has been converted to deoxyhemoglobin), but because the electromagnetic fields created by an active or firing neuron are so weak, the signal-to-noise ratio is extremely low and statistical methods used to extract quantitative data have been largely unsuccessful so far. The typical discarding of the low-frequency signals in BOLD-contrast imaging came into question in 1995, when it was observed that the "noise" in the area of the brain that controls right-hand movement fluctuated in unison with similar activity in the area on the opposite side of the brain associated with left-hand movement. BOLD-contrast imaging is only sensitive to differences between two brain states, so a new method was needed to analyse these correlated fluctuations called
resting state fMRI Resting state fMRI (rs-fMRI or R-fMRI) is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not bein ...
.


History

Its
proof of concept Proof of concept (POC or PoC), also known as proof of principle, is a realization of a certain method or idea in order to demonstrate its feasibility, or a demonstration in principle with the aim of verifying that some concept or theory has prac ...
of blood-oxygen-level-dependent contrast imaging was provided by
Seiji Ogawa Seiji Ogawa (小川 誠二 ''Ogawa Seiji'', born January 19, 1934) is a Japanese biophysicist and neuroscientist known for discovering the technique that underlies Functional Magnetic Resonance Imaging (fMRI). He is regarded as the father of moder ...
and Colleagues in 1990, following an experiment which demonstrated that an ''in vivo'' change of blood oxygenation could be detected with MRI. In Ogawa's experiments, blood-oxygen-level-dependent imaging of rodent brain slice contrast in different components of the air. At high magnetic fields, water proton magnetic resonance images of brains of live mice and rats under anesthetization have been measured by a gradient echo pulse sequence. Experiments shown that when the content of oxygen in the breathing gas changed gradually, the contrast of these images changed gradually. Ogawa proposed and proved that the oxyhemoglobin and deoxyhemoglobin is the major contribution of this difference. Other notable pioneers of BOLD fMRI include
Kenneth Kwong Kenneth Kin Man Kwong is a Hong Kong-born American nuclear physicist. He is a pioneer in human brain imaging. He received his bachelor's degree in Political Science in 1972 from the University of California, Berkeley. He went on to receive his P ...
and colleagues, who first used the technique in human participants in 1992.


See also

* Amplitude of low frequency fluctuations *
MRI sequence An MRI sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. A multiparametric MRI is a combination of two or more sequences, and/or includ ...
s


References

{{reflist Neuroimaging